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Hamiltonian dynamics is a very beautiful, and very powerful,
mathematical formulation of physical systems

— All the important models in GFD are Hamiltonian

Since it is a general formulation, it provides a framework for
“meta-theories”, providing traceability between different
approximate models of a physical system

— e.g. barotropic to quasi-geostrophic to shallow-water to
hydrostatic primitive equations to compressible equations

— Symmetries and conservation laws are linked by Noether’s
theorem

In their pure formulation, Hamiltonian systems are
conservative; but the Hamiltonian formulation provides a
framework to understand forced-dissipative systems too

— The nonlinear interactions are generally conservative
— Example: energy budget (APE and Lorenz energy cycle)
— Example: momentum transfer by waves



« Hamilton’s equations for a canonical system:
dq, _ dH dp, dH
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« For a Newtonian potential system, we get Newton’s second
law:
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« The symplectic formulation of Hamiltonian dynamics can be

generalized to other J, which have to satisfy certain
mathematical properties

Among these is skew-symmetry, which guarantees energy
conservation:

dH_aHdu,-_aH] _ 0

dt  Ou; dt " du;

The canonical J is invertible. If J is non-invertible, then
Casimirs are defined to satisfy

aC , Y
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Casimirs are invariants of the dynamics since
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Example of a non-canonical Hamiltonian representation:
Euler’'s equations for a rigid body. The dependent variables
are the components of angular momentum about principal
axes, and the total angular momentum is a Casimir invariant.

Cyclic coordinates: e.g. rotational symmetry implies
conservation of angular momentum

oH dp.
—=0= P =0 foragiveni
aq, dt
More generally, the link between symmetries and
conservation laws is provided by Noether’s theorem:

Given a function F(u), define dru; = e ;(0F /Ou;)
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But dF _oF du _oF | oH
dt Ou; dt B Cu; 4 Gu,-

and hence ésH =0 if and only if dF/dt =0

Casimir invariants are associated with ‘invisible’ symmetries
since -
ocu = 0

Example: rigid body

Barotropic dynamics is a Hamiltonian system

Cw
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Functional derivatives are just the infinite-dimensional analogue
of partial derivatives; they can reflect non-local properties

Barotropic dynamics can be written in symplectic form as:
0w M
ot om

The Casimir invariants are:

where | = —0(w,")

C= / / Clw)dxdy with L =C(o)

0w
and correspond to Lagrangian conservation of vorticity
Symmetry in x and conservation of x-momentum:
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« Similarly for y-momentum and angular momentum:

M= —//xwdxd)’szvdxdy
.-'\/[==—f/%rzwdxdyzf/i.(rxv)dxdy

* Quasi-geostrophic dynamics is analogous; e.g. for
continuously stratified flow
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Now in addition to potential vorticity q(x,y,z,t), we need to
consider potential temperature on horizontal boundaries
W, (x,y,t) [and possibly also circulation on sidewalls]

Note that for the QG model these quantities also evolve
advectively, like vorticity in barotropic dynamics:

('é_c: = —v.Vo = -08(y, o)

Analogously, the Casimir invariants and x-momentum are:
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Rotating shallow-water dynamics:
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1
g’:-w (bv) = H= //§{h|V|2+gh2} dx dy

SH 5H Ll o
v Vo sy T2V TE

0 q —0O A
J={ -9 0 -3 g=(f+z2-Vxv}/h



Disturbance invariants: arguably the most powerful
application of Hamiltonian geophysical fluid dynamics

Ambiguities about the energy of a wave...

Ambiguities about the momentum of a wave...

If u=U is a steady solution of a Hamiltonian system, then
OH|

=0
ou u=U

For a canonical system, J is invertible so éH/ou=0atu="U.

* Hence the disturbance energy is quadratic

But for a non-canonical system, this is not true and the
disturbance energy is generally linear in the disturbance

* Not sign-definite
« Cannot define stability, normal modes, etc.



 Pseudoenergy:

i}f =0 impli (S—H
S u:U— implies Sa

Thus &(H+C)=0 at u=U,

&

= for some Casimir C
4eU ou

u=U

A=(H+C)ul - (H+C)U] isthen both conserved and

(pseudoenergy) quadratic in the disturbance

Example: Available potential energy (APE) for the 3D
stratified Boussinesq equations

(1, OH OH
H—// {5ps|\’l +pgz} dxdydz  ——=p,v, o &

Consider disturbances to a resting basic state v =0, p = py(z).
d

C=/// C(p)dxdydz with 5—§= C'(p)
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In the last expression, z must be regarded as a function of p,
via Z(py(z)) = z ; so py(z) must be invertible, i.e. monotonic

Hence the basic state must be stably stratified

Clo) =~ /ng(b) dp A =///{% v[* + (p ~ po)gz
- p

— [ gZ(p) d[)} dx dydz

Po
The last two terms in the expression for A can be written

P—FPo
_ /O g Z(po +p) — Z(py)]dp  (positive definite)

_gle—py)*  (APE of internal
2(dpy/dz)  gravity waves)

Such an APE can be constructed for any Hamiltonian system

Small-amplitude approximation




Pseudomomentum: In a similar manner, if a basic state u=U
is independent of x (i.e. is invariant with respect to translation

in x), then by Noether’s theorem,

~

T 0.
oU/éx =0 Iimplies ]—:Ai =0
ou |, u

which implies 6(M +C)=0atu=U for some Casimir C

A= (M+C)u] — (M +C)[U] is then both conserved and

(pseudomomentum) quadratic in the disturbance

Example: Barotropic flow on the beta-plane

oM oC
— e — '
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« Consider disturbances to an x-invariant basic state q,(y)

d(M+C)=0atg=gqy implies Cl(gy)=—y



This is analogous to the formula for APE, and similarly,

A= [[{= [ a0+ 2 - viaoida) axay

where Y(go(y)) =1y., which is negative definite for dgo/dy > 0

Small-amplitude approximation: _ 9~ q,‘))i
2(dqo/dy)

If q, is defined to be the zonal mean, then ¢, = Z] q=q —c_]
?

23,
Exactly the same form applies to stratified QG flow, where the

negative of this quantity is known as the Eliassen-Palm (E-P)
wave activity

and the zonal mean of this expression becomes -

N.B. The sign of this quantity corresponds to the sign of the
intrinsic frequency of Rossby waves (negative if dgo/dy > 0)



Relation to wave action: there is a classical result that under
slowly varying (WKB), adiabatic conditions, wave action is
conserved (Bretherton & Garrett 1969 PRSA)

A

%Jrv-gA:o where A =—

R ot ’ 0,

E is the wave energy (always positive definite) and @ is the
intrinsic frequency, both measured in the frame of reference

moving with the mean flow
Hence sgn(A) =sgn()

Under WKB conditions, pseudoenergy and pseudomomentum
are related to wave actionvia w A, kA respectively

However pseudoenergy and pseudomomentum are more
general, and extend beyond WKB conditions

— They require only temporal or zonal symmetry,
respectively, in the background state



Stability theorems: Pseudoenergy and pseudomomentum
are conserved in time (for conservative dynamics), and are
quadratic in the disturbance (for small disturbances), so for
normal-mode disturbances we have

A = Ape*t oA =0 (oisthe real partof the growth rate)
Then A # 0 implies o = 0 (normal-mode stability)

Therefore these conservation laws can provide sufficient
conditions for stability/necessary conditions for instability.
Indeed, many normal-mode stability theorems (e.g. Pedlosky
1987) result from expressions of the form

(r/{--~}d.r:0

where the integral turns out to be just pseudoenergy or
pseudomomentum (or some combination of the two)



« Example: Charney-Stern theorem. For stratified QG
dynamics, with horizontal boundaries, the pseudomomentum
IS given by

a=[[] /?0{— / @t - Y(Q)]dfi} dz dyd:
[ { -/ T o(ho = 3) - Yo(Ao)ldA dardy

plus another term with the opposite sign at the top boundary.
Here A=Y, is proportional to potential temperature.

z=0

 Baroclinic instability requires terms of opposite signs so A=0:
Eady model: Interior term vanishes, A <0 at bottom, A <0 at top
Charney model: Q>0 in interior, A <0 at bottom
Phillips model: Q <0 in lower levels, Q >0 in upper levels

« Barotropic instability: can be considered a special case



Other examples of Hamiltonian stability theorems:

— Static stability, centrifugal stability, symmetric stability

— Rayleigh-Kuo theorem, Fjartoft-Pedlosky theorem

— Arnol’'d’s first and second theorems

— Ripa’s theorem (shallow-water dynamics)

Notable exception: stratified shear flow (Miles-Howard theorem)

These Hamiltonian stability theorems can, in most cases, be
generalized to finite-amplitude (Liapunov) stability: i.e. for all €
there exists a d such that

[ ©O)) <6 = |u@)ll<e Vi

They can also be used to derive rigorous saturation bounds on
nonlinear instabilities; e.g. for a statically unstable resting state,

///2/) [v(t)|? dzdydz < At ///APE ) dzdydz



« Example: Bickley jet on barotropic beta-plane (a)
(Shepherd 1988 JFM)
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Relationship between pseudomomentum and momentum:

consider the zonally averaged zonal momentum equation for
the barotropic beta-plane:

T ou?  Ouv _ Jdp ou'v’
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Stratified QG dynamics: zonal-wind tendency equation,
temperature tendency equation, and thermal-wind balance
together imply

(")2 1 () 0 c)

ou )2 ——
ﬁ(—) = — (v where L= — +——"-
ot dy* (l 7) dy?  podz S 02

So it's the same physics, but the zonal-wind response to
mixing of potential vorticity is now spatially non-local (the
Eliassen balanced response)

The pseudomomentum conservation law takes the local form
(with S being a source/sink)

0A

B +V . - F = V-F=—-vq
(
ot O? 0> DA -
L) = = p= ()
at) — 9y (V') 92 c)z/ ot

So mean-flow changes require wave transience or non-
conservative effects (non-acceleration theorem)



In the atmosphere, we can generally assume that éy >0 since
q is dominated by 3

Hence A < 0; Rossby waves carry negative pseudomomentum

Where Rossby waves dissipate, there must be a convergence
of negative pseudomomentum, hence a negative torque

Conservation of momentum implies a positive torque in the
wave source region

This phenomenon is
seen in laboratory

rotating-tank experiments

A prograde jet emerges
from random stirring,
surrounded on either side
by retrograde jets (seen
in distortion of dye)

(Whitehead 1975 Tellus)




In the atmosphere, synoptic-scale Rossby waves are generated
by baroclinic instability, hence within a jet region
Flux of negative pseudomomentum out of jet corresponds to an
upgradient flux of momentum intothejet 94 9 —

+ (u'v') =0

q
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 In fact the wave propagation is up and out (generally
equatorward), as seen in these ‘baroclinic life cycles’ showing

baroclinic growth and barotropic decay (Simmons & Hoskins
1978 JAS)

E-P flux (arrows) and
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The vertical flux of pseudomomentum is expressed in terms of
the meridional heat flux

—F = (—pou/v', (pof/©,)v'0") is the Eliassen-Palm (E-P) flux

Reflects thermal-wind balance: poleward heat flux weakens
the thermal wind, accelerating the flow below and decelerating
the flow aloft (as in pure baroclinic instability)

During the wintertime when the stratospheric flow is westerly,
stationary planetary Rossby waves can propagate into the
stratosphere where they exert a negative torque, acting to
weaken the flow from its radiative equilibrium state

Stationary planetary-wave forcing mechanisms (topography,
land-sea temperature contrast) are stronger in the Northern
than in the Southern Hemisphere, hence the stratospheric
polar vortex is weaker in the Northern Hemisphere



Summary

Hamiltonian dynamics is applicable to all the important models
of geophysical fluid dynamics

— Provides a unifying framework between various models

— Systems are infinite-dimensional, and their Eulerian
representations are generally non-canonical

— To exploit Hamiltonian structure all that is needed is to
know the conserved quantities of a system

The most powerful applications are for theories describing
disturbances to an inhomogeneous basic state

— Non-trivial; e.g., wave energy is generally not conserved

— Useful measures of disturbance magnitude require the use
of Casimir invariants, following from Lagrangian invariants

— Leads to important concepts of pseudoenergy and
pseudomomentum: stability theorems immediately follow

— Important applications are available potential energy and
momentum transfer by waves



