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•  Hamiltonian dynamics is a very beautiful, and very powerful, 
mathematical formulation of physical systems 
–  All the important models in GFD are Hamiltonian 

•  Since it is a general formulation, it provides a framework for 
“meta-theories”, providing traceability between different 
approximate models of a physical system 
–  e.g. barotropic to quasi-geostrophic to shallow-water to 

hydrostatic primitive equations to compressible equations 
–  Symmetries and conservation laws are linked by Noether’s 

theorem 
•  In their pure formulation, Hamiltonian systems are 

conservative; but the Hamiltonian formulation provides a 
framework to understand forced-dissipative systems too 
–  The nonlinear interactions are generally conservative 
–  Example: energy budget (APE and Lorenz energy cycle) 
–  Example: momentum transfer by waves 



•  Hamilton’s equations for a canonical system: 

•  For a Newtonian potential system, we get Newton’s second 
law: 

!            

  Conservation of energy follows: 
  (repeated indices summed) 

  Symplectic formulation: 



•  The symplectic formulation of Hamiltonian dynamics can be 
generalized to other J, which have to satisfy certain 
mathematical properties  

•  Among these is skew-symmetry, which guarantees energy 
conservation: 

•  The canonical J is invertible. If J is non-invertible, then 
Casimirs are defined to satisfy 

  Casimirs are invariants of the dynamics since 



•  Example of a non-canonical Hamiltonian representation: 
Euler’s equations for a rigid body. The dependent variables 
are the components of angular momentum about principal 
axes, and the total angular momentum is a Casimir invariant. 

•  Cyclic coordinates: e.g. rotational symmetry implies 
conservation of angular momentum  

•  More generally, the link between symmetries and 
conservation laws is provided by Noether’s theorem: 
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•  But 

 and hence 

•  Casimir invariants are associated with ‘invisible’ symmetries 
since 

•  Example: rigid body  

•  Barotropic dynamics is a Hamiltonian system 

(assuming boundary 
terms vanish) 



•  Functional derivatives are just the infinite-dimensional analogue 
of partial derivatives; they can reflect non-local properties 

•  Barotropic dynamics can be written in symplectic form as: 

•  The Casimir invariants are: 

 and correspond to Lagrangian conservation of vorticity  
•  Symmetry in x and conservation of x-momentum: 

Kelvin’s impulse (ignoring 
boundary 
terms) 



•  Similarly for y-momentum and angular momentum: 

•  Quasi-geostrophic dynamics is analogous; e.g. for 
continuously stratified flow 



•  Now in addition to potential vorticity q(x,y,z,t), we need to 
consider potential temperature on horizontal boundaries 
ψz(x,y,t) [and possibly also circulation on sidewalls] 

•  Note that for the QG model these quantities also evolve 
advectively, like vorticity in barotropic dynamics: 

•  Analogously, the Casimir invariants and x-momentum are: 



•  Rotating shallow-water dynamics: 



•  Disturbance invariants: arguably the most powerful 
application of Hamiltonian geophysical fluid dynamics 

•  Ambiguities about the energy of a wave… 

•  Ambiguities about the momentum of a wave… 

•  If u=U is a steady solution of a Hamiltonian system, then 

•  For a canonical system, J is invertible so 

•  Hence the disturbance energy is quadratic 

•  But for a non-canonical system, this is not true and the 
disturbance energy is generally linear in the disturbance 
•  Not sign-definite 
•  Cannot define stability, normal modes, etc. 



•  Pseudoenergy: 

implies for some Casimir C 

Thus 

is then both conserved and 
quadratic in the disturbance (pseudoenergy) 

•  Example: Available potential energy (APE) for the 3D 
stratified Boussinesq equations 

•  Consider disturbances to a resting basic state 



•  In the last expression, z must be regarded as a function of ρ0 
via                      ; so ρ0(z) must be invertible, i.e. monotonic 

•  Hence the basic state must be stably stratified 

•  The last two terms in the expression for A can be written 

•  Small-amplitude approximation 

•  Such an APE can be constructed for any Hamiltonian system 

(positive definite) 

(APE of internal 
gravity waves) 



•  Pseudomomentum: In a similar manner, if a basic state u=U 
is independent of x (i.e. is invariant with respect to translation 
in x), then by Noether’s theorem, 

implies 

which implies for some Casimir C 

(pseudomomentum) 

•  Example: Barotropic flow on the beta-plane 

•  Consider disturbances to an x-invariant basic state q0(y) 

implies 

is then both conserved and 
quadratic in the disturbance 



•  This is analogous to the formula for APE, and similarly, 

where                      ,  which is negative definite for 

•  Small-amplitude approximation: 

•  If q0 is defined to be the zonal mean, then 

 and the zonal mean of this expression becomes 

•  Exactly the same form applies to stratified QG flow, where the 
negative of this quantity is known as the Eliassen-Palm (E-P) 
wave activity 

•  N.B. The sign of this quantity corresponds to the sign of the 
intrinsic frequency of Rossby waves (negative if                   )  
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q0 = q, q'= q − q



•  Relation to wave action: there is a classical result that under 
slowly varying (WKB), adiabatic conditions, wave action is 
conserved (Bretherton & Garrett 1969 PRSA) 

      is the wave energy (always positive definite) and       is the 
intrinsic frequency, both measured in the frame of reference 
moving with the mean flow  

•  Hence  
•  Under WKB conditions, pseudoenergy and pseudomomentum 

are related to wave action via                    respectively 

•  However pseudoenergy and pseudomomentum are more 
general, and extend beyond WKB conditions 
–  They require only temporal or zonal symmetry, 

respectively, in the background state 
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•  Stability theorems: Pseudoenergy and pseudomomentum 
are conserved in time (for conservative dynamics), and are 
quadratic in the disturbance (for small disturbances), so for 
normal-mode disturbances we have 

                                          (σ is the real part of the growth rate) 

•  Then              implies             (normal-mode stability)  

•  Therefore these conservation laws can provide sufficient 
conditions for stability/necessary conditions for instability. 
Indeed, many normal-mode stability theorems (e.g. Pedlosky 
1987) result from expressions of the form 

 where the integral turns out to be just pseudoenergy or 
pseudomomentum (or some combination of the two) 



•  Example: Charney-Stern theorem. For stratified QG 
dynamics, with horizontal boundaries, the pseudomomentum 
is given by 

 plus another term with the opposite sign at the top boundary. 
Here Λ=Ψz is proportional to potential temperature. 

•  Baroclinic instability requires terms of opposite signs so A=0: 

 Eady model: Interior term vanishes, Λy<0 at bottom, Λy<0 at top 

 Charney model: Qy>0 in interior, Λy<0 at bottom 

 Phillips model: Qy<0 in lower levels, Qy>0 in upper levels 

•  Barotropic instability: can be considered a special case 



•  Other examples of Hamiltonian stability theorems: 
–  Static stability, centrifugal stability, symmetric stability 

–  Rayleigh-Kuo theorem, Fjørtoft-Pedlosky theorem 

–  Arnol’d’s first and second theorems 

–  Ripa’s theorem (shallow-water dynamics) 

•  Notable exception: stratified shear flow (Miles-Howard theorem) 

•  These Hamiltonian stability theorems can, in most cases, be 
generalized to finite-amplitude (Liapunov) stability: i.e. for all ε 
there exists a δ such that 

•  They can also be used to derive rigorous saturation bounds on 
nonlinear instabilities; e.g. for a statically unstable resting state, 



•  Example: Bickley jet on barotropic beta-plane 
(Shepherd 1988 JFM) 

Supercriticality 

Numerical, inviscid Theoretical bound 

Numerical, viscous 



•  Relationship between pseudomomentum and momentum: 
consider the zonally averaged zonal momentum equation for 
the barotropic beta-plane: 

•  The linearized potential-vorticity equation is 

 and hence (if           ) 
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(Taylor identity) 



•  Stratified QG dynamics: zonal-wind tendency equation, 
temperature tendency equation, and thermal-wind balance 
together imply 

•  So it’s the same physics, but the zonal-wind response to 
mixing of potential vorticity is now spatially non-local (the 
Eliassen balanced response) 

•  The pseudomomentum conservation law takes the local form 
(with S being a source/sink) 

•  So mean-flow changes require wave transience or non-
conservative effects (non-acceleration theorem) 

where 



•  In the atmosphere, we can generally assume that             since 
q is dominated by β 

•  Hence A < 0; Rossby waves carry negative pseudomomentum 

•  Where Rossby waves dissipate, there must be a convergence 
of negative pseudomomentum, hence a negative torque 

•  Conservation of momentum implies a positive torque in the 
wave source region 

€ 

qy > 0

•  This phenomenon is 
seen in laboratory 
rotating-tank experiments 

•  A prograde jet emerges 
from random stirring, 
surrounded on either side 
by retrograde jets (seen 
in distortion of dye) 
 (Whitehead 1975 Tellus) 



•  In the atmosphere, synoptic-scale Rossby waves are generated 
by baroclinic instability, hence within a jet region 

•  Flux of negative pseudomomentum out of jet corresponds to an 
upgradient flux of momentum into the jet 

•  f 

Vallis (2006) 

€ 

∂A
∂t

+
∂
∂y

u'v '( ) = 0



•  In fact the wave propagation is up and out (generally 
equatorward), as seen in these ‘baroclinic life cycles’ showing 
baroclinic growth and barotropic decay (Simmons & Hoskins 
1978 JAS) 

E-P flux (arrows) and 
divergence (contours) 

Edmon, Hoskins & 
McIntyre (1980 JAS) 

Haynes & Shepherd 
(1989 QJRMS) 

Acceleration Deceleration 



•  The vertical flux of pseudomomentum is expressed in terms of 
the meridional heat flux 

•  Reflects thermal-wind balance: poleward heat flux weakens 
the thermal wind, accelerating the flow below and decelerating 
the flow aloft (as in pure baroclinic instability) 

•  During the wintertime when the stratospheric flow is westerly, 
stationary planetary Rossby waves can propagate into the 
stratosphere where they exert a negative torque, acting to 
weaken the flow from its radiative equilibrium state 

•  Stationary planetary-wave forcing mechanisms (topography, 
land-sea temperature contrast) are stronger in the Northern 
than in the Southern Hemisphere, hence the stratospheric 
polar vortex is weaker in the Northern Hemisphere 

is the Eliassen-Palm (E-P) flux 



•  Hamiltonian dynamics is applicable to all the important models 
of geophysical fluid dynamics 
–  Provides a unifying framework between various models 
–  Systems are infinite-dimensional, and their Eulerian 

representations are generally non-canonical 
–  To exploit Hamiltonian structure all that is needed is to 

know the conserved quantities of a system 
•  The most powerful applications are for theories describing 

disturbances to an inhomogeneous basic state 
–  Non-trivial; e.g., wave energy is generally not conserved 
–  Useful measures of disturbance magnitude require the use 

of Casimir invariants, following from Lagrangian invariants 
–  Leads to important concepts of pseudoenergy and 

pseudomomentum: stability theorems immediately follow 

–  Important applications are available potential energy and 
momentum transfer by waves 

Summary 


