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Problem setting

We consider an ideal, inviscid, incompressible two-dimensional (2D) fluid
governed by Euler’s equation (1755):

Du
Dt

=
∂u
∂t

+ u · ∇u = −∇p

ρ

where u = (u, v) is the velocity field, p is pressure and ρ is (here) the
constant density. We also have

∇ · u = 0 .

Taking the 2D curl of Euler’s equation results in

Dω

Dt
= 0

where ω = ∂v/∂x − ∂u/∂y is the (scalar) vorticity (normal to the plane).
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Problem setting

As the flow is 2D incompressible, we may satisfy ∇ · u = 0 exactly by
introducing a streamfunction ψ in terms of which

u = −∂ψ
∂y

and v =
∂ψ

∂x
.

Then the definition of vorticity ω = ∂v/∂x − ∂u/∂y implies

∇2ψ = ω ,

a Poisson equation determining ψ(x , t) from the instantaneous distribution
of ω(x , t). This is non-local.

The evolution equation Dω/Dt = 0 is nonlinear because the advecting
velocity field u depends on ω (non-locally as well).
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Problem setting

Note that vorticity is materially-conserved, i.e. constant on fluid particles.
This is a consequence of Kelvin’s circulation theorem.

The infinite-dimensional dynamical system is Hamiltonian, with the kinetic
energy serving as the Hamiltonian.

If the fluid domain has translational symmetry, then Kelvin’s impulse

I =

∫ ∫
ω x dxdy

is also conserved.

If the fluid domain has rotational symmetry, then the angular impulse

J =

∫ ∫
ω (x2 + y2)dxdy

is also conserved.
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Vorticity interfaces

Consider two fluid particles having the same vorticity, ω = ω0, say.

If we exchange their positions, the distribution of ω(x , t) is unaffected.
Therefore, this has no consequence for the flow evolution.

Now consider a vorticity interface, a curve C dividing the plane into two
regions of uniform vorticity, ω+ and ω−.

ω+

ω−

The above ‘particle exchange symmetry’ means that only C and the jump
in vorticity ∆ω = ω+ − ω− across it matter in determining the velocity
field u.
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Vorticity interfaces

Let C be directed such that vorticity ω+ lies to its left, and ω− lies to its
right. (C can be open or closed.)

The formal solution of Poisson’s equation ∇2ψ = ω in the entire plane is

ψ(x , t) =
1

2π

∫ ∫
ω(x ′, t) log |x ′ − x | dxdy

=
ω+

2π

∫ ∫
R+

log |x ′ − x |dx ′dy ′+

ω−
2π

∫ ∫
R−

log |x ′ − x | dx ′dy ′

where R+ and R− are the regions where ω = ω+ and ω−, respectively.
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Vorticity interfaces

Consider the associated velocity field, u = −∂ψ/∂y and v = ∂ψ/∂x :

u(x , t) =
ω+

2π

∫ ∫
R+

(
− ∂

∂y
,
∂

∂x

)
log |x ′ − x |dx ′dy ′+

ω−
2π

∫ ∫
R−

(
− ∂

∂y
,
∂

∂x

)
log |x ′ − x |dx ′dy ′ .

However, the function log |x ′ − x | is symmetric in x ′ and x .
Hence, the above can equally-well be written

u(x , t) =
ω+

2π

∫ ∫
R+

(
∂

∂y ′
, − ∂

∂x ′

)
log |x ′ − x |dx ′dy ′+

ω−
2π

∫ ∫
R−

(
∂

∂y ′
, − ∂

∂x ′

)
log |x ′ − x |dx ′dy ′ .
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Vorticity interfaces

Green’s theorem (Stokes’ theorem in the plane) tells us∫ ∫
R

(
∂Q

∂x ′
− ∂P

∂y ′

)
=

∫
C
P dx ′ + Q dy ′

for (almost) any functions P(x ′, y ′) and Q(x ′, y ′). Here the contour C is
traversed so that R is always on its left.

Therefore, taking P = log |x ′ − x | and Q = 0 for u, and taking P = 0 and
Q = log |x ′ − x | for v , we have

u(x , t) = −∆ω

2π

∫
C
log |x ′ − x |dx ′ ,

a remarkably compact expression! The jump in vorticity ∆ω arises because
C is traversed in opposite directions in the two regions.
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Vorticity interfaces

The dynamics cannot depend on fluid particles in the regions outside C,
since these particles can be exchanged arbitrarily with no effect on the
velocity field u.

⇒ Therefore, the dynamics is entirely dependent on C.

We can deduce how C evolves by evaluating u on C and equating this to
the material derivative of a particle on C:

dx
dt

= −∆ω

2π

∫
C
log |x ′ − x | dx ′ .

This is a self-contained equation for the evolution of C.

It is known as ‘Contour Dynamics’ (Zabusky, Hughes & Roberts 1979)
or the ‘Water Bag Model’ (Berk & Roberts 1965).
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Vorticity interfaces

Contour Dynamics in an infinite-order Hamiltonian dynamical system.

As a result, it is capable of exhibiting arbitrarily great complexity.

Many (equilibrium) solutions exist, some exact like the line, the circle and
the ellipse (Kirchhoff 1876).

The line and circle have been proven to be linearly stable (Kelvin 1880),
and the ellipse as well for aspect ratios less than 3 (Love 1893).

Furthermore, the line and circle have been proven to be nonlinearly stable
(Dritschel, JFM 191, 575–582, 1988).
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Evolution of small disturbances

Lord Kelvin (William Thomson) in his paper “Vibrations of a columnar
vortex” (Phil. Mag. 10, 155–168, 1880) first considered the behaviour of
linear, small-amplitude waves.

The equilibrium flow consists of a circular region of uniform vorticity
surrounded by irrotational fluid extending to infinity. In 2D, this is called a
circular “vortex patch”.

In 2D, only boundary deformations matter for the flow evolution. One can
therefore consider (linear) boundary waves of the form

r(θ, t) = R + ℜ{η(θ, t)} where η(θ, t) = a e i(mθ−σt)

where r is radius, R is the mean radius, |a| ≪ R is the disturbance
amplitude, m is its azimuthal wavenumber and σ is its frequency. This
ansatz takes advantage of the rotational symmetry of the equilibrium flow.
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Linear behaviour

The frequency σ is determined as an eigenvalue, after expanding the
governing equations to first order in η/R ≪ 1, neglecting higher-order
terms.

The most direct approach is to use the contour-dynamics equation, since
then there are no boundary conditions to consider. After much algebra ...
one may show

∂η

∂t
+ 1

2∆ω
∂η

∂θ
=

∆ω

4π

∫ 2π

0

η(α, t) sin(α− θ)

1− cos(α− θ)
dα

— to leading-order in η/R. This is non-local.

Of course, η = 0 is a solution (trivial), but there also exist non-trivial
solutions. Inserting η(θ, t) = a e i(mθ−σt), one finds

−iσ η = −1
2∆ω i (m − 1) η .
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Linear behaviour

For η ̸= 0, we can cancel i η to obtain the dispersion relation

σ = 1
2∆ω (m − 1)

(Kelvin, 1880). This does not appear to be special, but in equilibrium the
boundary rotates at the rate 1

2∆ω. Thus, in a frame of reference rotating
with the vortex boundary,

σ = −1
2∆ω

— independent of m. There is no dispersion!

Hence, a disturbance made up of an arbitrary superposition of waves

η(θ, 0) =
∑
m>0

am e imθ

evolves, in linear theory, according to

η(θ, t) = η(θ, 0) e
1
2
i∆ωt .
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Linear behaviour — evolution over one period

Evolution of the real part of η(θ, t) over one period T = 4π/∆ω

θ −→
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Nonlinear behaviour

Any finite-amplitude disturbance will experience differential rotation —
shear — arising from the equilibrium flow. (Below, Ω = dθ/dt.)

Fluid particles at outward-pointing wave crests (r > R) will move,
tangentially (in θ), slightly faster than particles at smaller radii.

Kelvin (1880) reasoned (correctly!) that this would eventually cause the
wave to steepen and break.
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Some history

From Alex D. D. Craik “Lord Kelvin on fluid mechanics”
(Eur. Phys. J. H37, 75–114, 2012):

On introducing a slight deformation, “the central vortex column is set into
vibration” creating waves that cause “corrugation to travel round the
cylindrical bounding sheet, by which energy is consumed, and moment of
momentum taken out of the fluid”.

... Kelvin asserts that: “The consumption of energy still goes on, and the
way in which it goes on is this: the waves of shorter length are indefinitely
multiplied and exalted till their crests run out into fine laminae of liquid....
Thus a certain portion of the irrotationally revolving water becomes
mingled with the central vortex column. The process goes on until what
may be called a vortex sponge is formed ... consisting of portions of
rotational and irrotational fluid, more and more finely mixed together as
time advances.”
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108 years later ... from Dritschel (J. Fluid Mech. 194, 511–547, 1988):

−θ −θ

“The repeated filamentation of two-dimensional vorticity interfaces”
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Weakly nonlinear theory

In Dritschel (JFM 194), a weakly nonlinear theory was developed to
describe the observed wave steepening up to the onset of filamentation.

That theory predicts that filamentation will occur on a time-scale inversely
proportional to the square of the maximum initial wave slope — for any
unsteady disturbance.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

We sketch the derivation next and examine newly-discovered mathematical
properties, including the self-similar blow-up of wave slope.

[This is joint work with Adrian Constantin (University of Vienna) and
Pierre Germain (Imperial College London).]
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Weakly nonlinear theory

In Cartesian coordinates, the equations of Contour Dynamics on the
surface of a sphere closely resemble those on the plane:

dx
dt

= −∆ω

2π

∫
C
log |x ′ − x | dx ′ .

The only difference is that on the sphere, the points x and x ′ are
three-dimensional but constrained to have unit magnitude, without loss of
generality (Dritschel, J. Comput. Phys. 78, 477–483, 1988).

ω+

ω−

The weakly nonlinear theory (WNT) was developed
for a zonal circular patch, z = z0,
dividing the sphere into two regions with
vorticity ω+ to the north (z > z0) and
vorticity ω− to the south (z < z0).

The planar limit may be recovered by considering z0 → 1.
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Weakly nonlinear theory

The requirement (by Stokes’ theorem) that the integral of ω vanishes over
any closed surface means

(1− z0)ω+ + (1 + z0)ω− = 0 .

Together with the definition ∆ω = ω+ − ω−, we have

ω+ = 1
2(1 + z0)∆ω and ω− = −1

2(1− z0)∆ω

which implies that the jump ∆ω alone is sufficient to specify ω over the
whole sphere.

Note that the area of the region north of z0 is 2π(1− z0), while the area
of the region south of z0 is 2π(1 + z0).

In the planar limit, ω+ → ∆ω and ω− → 0.
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Weakly nonlinear theory

ω+

ω−

We consider a disturbed vorticity interface of the form

z(θ, t) = z0 − r20 ρ(θ, t)

where r0 = (1− z20 )
1
2 .

Here ρ(θ, t) is the displacement function, considered small compared to
unity (this form facilitates taking the planar limit). We take

ρ(θ, t) = a η(θ, t)

where a ≪ 1 and η = O(1).

Using the multiple-time-scales expansion in Dritschel (JFM 194), we take

η(θ, t) = A(θ, t)e
1
2
i∆ω t + c.c.

where A(θ, t) = A0(θ, τ) + aA1(θ, t, τ) + a2..., and where τ = ∆ω a2t
is the slow time.
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Weakly nonlinear theory

Plugging this into the Contour Dynamics equation, expanding to O(a3),
and removing any terms that would lead to secular growth, one finds a
cubically-nonlinear equation for A0 (hereafter written simply as A):

∂A
∂τ

=
1

2

∂

∂θ

[
z20T1 + T2 − (z20 + 1) |A|2A

]
where

T1 = i

(
A ∂

∂θ
(W −W)− |A|2∂A

∂θ

)
and

T2 = − 1

4π

∫ 2π

0

|A(α, τ)−A(θ, τ)|2 [A(α, τ)−A(θ, τ)]

1− cos(α− θ)
dα .

Above, W is the part of |A|2 expressible in positive wavenumbers, i.e.

W =
∞∑

m=1

wm(τ) e
imθ ,

and an over-bar denotes complex conjugation.
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Weakly nonlinear theory

Surprisingly, by explicit calculation, starting with the general Fourier series

A =
∞∑

m=1

ame
imθ ,

one can show T2 = T1 ! In this case, we have more simply

∂A
∂τ̃

=
∂B
∂θ

where τ̃ = 1
2(z

2
0 + 1) τ is a re-scaled slow time, and B = T2 − |A|2A.

Explicitly,

B(θ, τ̃) =− 1

4π

∫ 2π

0

|A(α, τ̃)−A(θ, τ̃)|2 [A(α, τ̃)−A(θ, τ̃)]

1− cos(α− θ)
dα

− |A(θ, τ̃)|2A(θ, τ̃) .
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Weakly nonlinear theory

All explicit dependence on z0 disappears! This is a universal equation for
the onset of filamentation.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

In spectral form, the Fourier coefficients am(τ̃) of A obey

dam
dτ̃

= 1
2 im

∑
n

∑
p

(n + p − |n −m| − |p −m| − 2)anap ān+p−m ,

where n and p are positive integers for which n + p > m.

The −2 in the brackets above comes from the |A|2A term in B, a term
which is absent for a periodic linear vorticity interface on the plane.
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Weakly nonlinear theory

Some interesting properties of this equation:

a1 is constant (da1/dτ̃ = 0);

The ‘momentum’ P =
∑

m |am|2 is constant;

The ‘mass’ M =
∑

m |am|2/m is constant;

The ‘energy’ E is constant.

The energy (kinetic energy) is

E =
1

4π2

∫ 2π

0

∫ 2π

0

|A(α, τ̃)−A(θ, τ̃)|4

1− cos(α− θ)
dα dθ − 2

π

∫ 2π

0
|A(θ, τ̃)|4 dθ .

Further mathematical results can be found in Constantin, Dritschel &
Germain, Nonlinearity (2024).
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Results

In the WNT, all disturbances consisting of a single harmonic m = k
are periodic in time, and propagate at speed dθ/dτ̃ = −k(k − 1)|ak |2.

Consider the initial condition

A(θ, 0) = ak(0)e
ikθ + ap(0)e

ipθ

for p > k. Here, we take ap(0) = ϵe iπ/3 and ak(0) = (1− ϵ2)
1
2 ,

with k = 2 and p = 3.

The first example uses ϵ = 0.5. [movie]

Numerically, we solve for the Fourier modes explicitly but truncating m to
M = 2048 modes. The invariants are monitored to ensure accuracy.
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Real and
imaginary
parts of A
(Ar and Ai )
are shown in
blue and red
respectively.
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Real part of A,
Ar , compared
with a spherical
Contour Dynamics
simulation starting
with ρ = 2aAr

and a = 1/40.
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Upon closer inspection...

The WNT describes the onset of filamentation exceedingly well.
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And what happens later ... in Contour Dynamics?
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Evidence for a finite-time singularity in the WNT

Evolution of the spectral slope q, obtained by a least-squares fit of
log |am|2 to q logm + c , between wavenumbers m = 10 and M/2 = 1024.

The slope appears to shallow to a critical value of −3
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Evidence for a finite-time singularity in the WNT

Maximum amplitude Maximum wave slope s

Location of smax Corresponding speed
The maximum wave slope appears to diverge in finite time
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Evidence for a finite-time singularity in the WNT

Evolution of the maximum wave slope s(τ̃) = |∂A/∂θ|max together with a
fit to

√
c/(τ̃c − τ̃) (left), and the function f (τ̃) = s2(τ̃c − τ̃)− c (right)

which would be zero for a perfect fit.
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Self-similar blow up

The observations suggest looking for a solution of the form

A(θ, τ̃) = δiµψ(ξ) ,

where ψ is some universal function, and where

ξ =
θ − θmax(τ̃)√

δ
and δ = 1− τ̃ /τ̃c ≪ 1 .

Above, τ̃c is the singularity time, to be determined along with ψ(ξ).

The δiµ pre-factor (with µ real) is the most general form consistent with
|A| remaining finite and non-zero as τ̃ → τ̃c .

As observed, this form leads to∣∣∣∣∂A∂θ
∣∣∣∣
max

∝ 1√
τ̃c − τ̃

.
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Self-similar blow up: the universal equation

Derivation (abbreviated)

Take θ = θmax + δ
1
2 ξ and α = θmax + δ

1
2 ξ′. For δ ≪ 1, assuming

ξ′ − ξ = O(1), one can show that

B = δiµ−
1
2 b(ξ)

to leading order in δ, where

b(ξ) = − 1

2π

∫ ∞

−∞

|ψ(ξ′)− ψ(ξ)|2 [ψ(ξ′)− ψ(ξ)]

(ξ′ − ξ)2
dξ′

assuming sufficiently fast far-field decay.

Note: the neglected term, |A|2A, is O(δ
1
2 ) smaller.
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Self-similar blow up: the universal equation

The left-hand side of the WNT equation evaluates to

∂A
∂τ̃

=
∂

∂τ̃

(
δiµψ(ξ)

)
= iµδiµ−1ψ + δiµ

dψ

dξ

∂ξ

∂τ̃
.

However, since ξ = (θ − θmax)δ
− 1

2 and δ = 1− τ̃ /τ̃c , we have

∂ξ

∂τ̃
= −δ−

1
2
dθmax

dτ̃
+ δ−1 ξ

2τ̃c
.

For δ ≪ 1, we can neglect the O(δ−
1
2 ) term, giving

∂A
∂τ̃

≈ δiµ−1

(
iµψ +

ξ

2τ̃c

dψ

dξ

)
to leading order in δ.
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Self-similar blow up: the universal equation

The right-hand side of the WNT equation evaluates to

∂B
∂θ

=
∂

∂θ

(
δiµ−

1
2 b(ξ)

)
= δ−

1
2
d

dξ

(
δiµ−

1
2 b(ξ)

)
= δiµ−1db

dξ
.

Cancelling the factor δiµ−1 from the l.h.s. and r.h.s., we find

iµψ +
ξ

2τ̃c

dψ

dξ
= − 1

2π

d

dξ

∫ ∞

−∞

|ψ(ξ′)− ψ(ξ)|2 [ψ(ξ′)− ψ(ξ)]

(ξ′ − ξ)2
dξ′ .

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

The claim is that this equation describes the blow up of wave slope on
vorticity interfaces, and that almost all initial conditions are attracted to
this blow up solution in finite time.
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Fit to the self-similar form

The estimated self-similar solution ψ(ξ) (real part in cyan, imaginary part

in magenta), together with scaled numerical profiles, δ−iµA(θmax+ δ
1
2 ξ, τ̃),

at times τ̃ = 0.345, 0.347, 0.349, 0.351, 0.353 and 0.355 (real part in
blue, imaginary part in red, with fading backwards in time).
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Exact solutions: stability

We noted earlier that the single-mode solutions

A(θ, τ̃) = ake
ikθ+k(k−1)|ak |2τ̃

are exact, translating wave solutions of the WNT.

There are the analogues of the “V-state” solutions first discovered by
Deem & Zabusky, Phys. Rev. Lett. 40(13), 859–862 (1978).

We have also discovered exact, periodic-in-time two-mode solutions
[movie]:

A(θ, τ̃) = a1e
iθ + ake

ikθ+k(k−1)(2|a1|2+|ak |2)τ̃ .

We consider next the stability of these solutions. Does a finite-time
singularity in wave slope still occur? Is it inevitable?

David Dritschel (University of St Andrews) The onset of filamentation 2 October 2024 40 / 44



Consider the same form of initial condition as previously:

A(θ, 0) = (1− ϵ2)
1
2 e2iθ + ϵe iπ/3e3iθ

but now with ϵ = 0.1 (5 times smaller). [movie]

Maximum amplitude Maximum wave slope s

Location of smax Corresponding speed
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Evolution of spectral norms
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Accuracy? Conservation of momentum P and mass M

Note: the spectral coefficients am were saved to 11 decimal places, so the
error before t = 34 is even less than that shown.

The simulation becomes unreliable after t = 37 due to the numerical
truncation and filtering of high m modes.

• Filamentation likely occurs just after t = 37 •
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Conclusions

• Two-dimensional flows described by Euler’s equation admit a Contour
Dynamics formulation for piecewise-uniform vorticity.

• A circular or linear interface is an exact, steady solution of the system.

• Small disturbances, in a frame of reference moving with the mean
velocity of the interface, simply oscillate in place with no dispersion
(in linear theory).

• Nonlinearity allows for a progressive, inevitable steepening, resulting in
repeated filamentation, and an increasingly complex vorticity interface.

• A weakly nonlinear theory, originally developed in Dritschel (JFM 194,
1988) accurately describes the onset of filamentation.
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