
流体力学授業資料 (2026-01-05)
6. ポテンシャルを用いた流れの表現

6.1速度ポテンシャル,流線関数

6.1.1速度ベクトルの分解

速度場 𝒗 を以下のように分解する.
𝒗 = grad𝜙 + rot𝚿. (1)

𝜙 [m2 sec−1]は速度ポテンシャル, 𝚿 [m2 sec−1]はベクトルポテンシャル.

• 2次元直線直交座標系 (𝑥, 𝑦)の場合: ベクトルポテンシャルとして
𝚿 = (0, 0,Ψ) = (0, 0,−𝜓) (2)

を考えれば良い. このとき,

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
− 𝜕𝜓

𝜕𝑦
, 𝑣𝑦 =

𝜕𝜙

𝜕𝑦
+ 𝜕𝜓

𝜕𝑥
. (3)

• 2次元極座標 (𝑟, 𝜃) の場合:

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
− 1
𝑟

𝜕𝜓

𝜕𝜃
, 𝑣𝜃 =

1
𝑟

𝜕𝜙

𝜕𝜃
+ 𝜕𝜓

𝜕𝑟
. (4)

6.1.2流線関数

• 2次元の場合の Ψあるいは 𝜓 を特に流線関数という.

• 2次元非発散流れ
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
= 0の場合,

𝒗 = rot(−𝒌𝜓) = 𝒌 × grad𝜓 (5)

𝒌 は着目する 2次元平面と直交する単位ベクトル.

直線直交座標系では

𝑣𝑥 = −𝜕𝜓

𝜕𝑦
, 𝑣𝑦 =

𝜕𝜓

𝜕𝑥
. (6)

極座標系では

𝑣𝑟 = −1
𝑟

𝜕𝜓

𝜕𝜃
, 𝑣𝜃 =

𝜕𝜓

𝜕𝑟
. (7)

• 例題:

𝜓 = sin(𝑘𝑥) cos(𝑙𝑦). (8)
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• 面 𝑆を通過する流量

𝑀 =
∫
𝑆
𝒗 · 𝑑𝑺. (9)

2次元非発散の場合:

𝑀 =
∫
𝑙
𝒗 · 𝒏𝑑𝑙 =

∫
𝑙
𝒌 × grad𝜓 · 𝒏𝑑𝑙 =

∫
𝑙
𝒏 × 𝒌 · grad𝜓𝑑𝑙 = −

∫
𝑙
grad𝜓 · 𝑑 𝒍

(10)
= −𝜓 |21 (11)

となる. ここで,ベクトル解析の公式 (𝑨 × 𝑩) · 𝑪 = (𝑪 × 𝑨) · 𝑩を使った.

6.2渦無し流れ (ポテンシャル流)
渦無しの流れ 𝝎 = rot𝒗 = 0の場合,

𝒗 = grad𝜙 (12)

6.2.1渦無し流れ (ポテンシャル流)の循環

• 単連結領域の場合: 単連結とは, 領域内の任意の閉曲線が全て 1 点に縮めら
れるような領域. 単連結領域なら任意の閉曲線 𝐶 について

Γ =
∮

𝒗 · 𝑑 𝒍 =
∫

𝝎 · 𝑑𝑺 = 0. (13)

• 𝑁 + 1重連結領域 (𝑁 個の切れ目を入れると単連結領域になる領域)の場合:

Γ = 𝑝1Γ1 + . . . + 𝑝𝑁Γ𝑁 . (14)

ここで, Γ𝑖 は, 𝑁 + 1 重連結領域に入れた「切れ目」 Σ𝑖 を 1 回だけ横切
る閉曲線についての循環. また 𝑝𝑖 は, Σ𝑖 を正の向きに横切る回数であり,
𝑝𝑖 = 0,±1,±2, · · · である. Γと速度ポテンシャル 𝜙の関係は

Γ =
∮
𝐶
𝒗 · 𝑑 𝒍 =

∮
𝐶

grad𝜙 · 𝑑 𝒍 =
∮
𝐶
𝑑𝜙. (15)

Σ1 Σ2

図 1: 3重連結領域.

• 例: 半径 𝑎の円領域をくり抜いた流れ場 (図 2).

𝒗 = (𝑣𝑥 , 𝑣𝑦) =
(
− 𝑦

𝑥2 + 𝑦2 ,
𝑥

𝑥2 + 𝑦2

)
, ただし 𝑥2 + 𝑦2 > 𝑎2. (16)
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図 2: 円領域のまわりの流れ.

6.2.2ポテンシャル流の時間発展方程式

運動方程式

𝜕𝒗

𝜕𝑡
+ 𝝎 × 𝒗 + 1

2
grad|𝒗 |2 = −1

𝜌
grad𝑝 − gradΦ + 𝑭 (17)

において 𝝎 = 0なので

𝜕𝒗

𝜕𝑡
+ 1

2
grad|𝒗 |2 = −1

𝜌
grad𝑝 − gradΦ + 𝑭. (18)

順圧 𝜌 = 𝜌(𝑝) の場合,

𝜕𝒗

𝜕𝑡
+ 1

2
grad|𝒗 |2 = −grad

∫
𝑑𝑝

𝜌
− gradΦ + 𝑭 (19)

となる. ここで,

1
𝜌

𝑑 𝑝

𝑑𝑥
=

𝑑

𝑑𝑥

∫ 𝑝 𝑑𝑝

𝜌(𝑝) (20)

を使った. 𝑭がナビエ・ストークス型の粘性なら

𝑭 = 𝜈∇2𝒗 = 𝜈grad(div𝒗) − 𝜈rot(rot𝒗) = 𝜈grad(div𝒗). (21)

したがって, 𝜈が定数の場合

𝜕grad𝜙
𝜕𝑡

+ 1
2

grad|𝒗 |2 = −grad
∫

𝑑𝑝

𝜌
− gradΦ + grad(𝜈div𝒗). (22)

すなわち

𝜕𝜙

𝜕𝑡
+ 1

2
|𝒗 |2 +

∫
𝑑𝑝

𝜌
+Φ − 𝜈∇2𝜙 = 𝑓 (𝑡). (23)

𝑓 (𝑡) は時間のみに依存する任意関数. これと連続の式

𝜕𝜌

𝜕𝑡
+ div (𝜌grad𝜙) = 0 (24)

とで系を記述する完全な時間発展方程式となる.
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6.3三次元ポテンシャル流の例
渦無し (rot𝒗 = 0)で,非圧縮 (div𝒗 = 0), 𝜌 = 𝜌0 となる流体の場合,速度場は

∇2𝜙 = 0 (25)

だけで決まる. したがって, Laplace方程式を解けば良い.

6.3.1一様な流れ (uniform flow)

𝜙 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑. (26)

6.3.2湧き出し,吸い込み

𝜙 = −𝑚
𝑟
. (27)

𝑚 [m3 sec−1] は 1 秒間にわき出す/沈み込む流体の体積. わきだし (もしくは, 吸い
込み)の総量は,半径 𝑟 の円の周に沿って速度の動径成分を積分すると求められる.

𝑄 =
∫
𝑆
𝒗 · 𝑑𝒔 =

∫
𝑆
𝑣𝑟𝑑𝑆 =

∫ 𝜋/2

−𝜋/2

∫ 2𝜋

0

𝑚

𝑟2 𝑟
2 cos 𝜃𝑑𝜃𝑑𝜙 = 4𝜋𝑚. (28)

4𝜋𝑚 をわきだし (もしくは,吸い込み)の強さという.

v_r
流線

x

y

φ=一定

図 3: 湧き出し,吸い込み.

6.3.3一様流れ場中の湧き出し (𝑚 > 0)

𝜙 = 𝑈𝑥 − 𝑚

𝑟
= 𝑈𝑟 cos 𝜃 − 𝑚

𝑟
. (29)

ただし 𝑥 軸方向が 𝜃 = 0.
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図 4: 一様流中の湧き出し. 原図は今井功 (1973)「流体力学 (前編)」, 裳華房の
3-10図.

• 淀み点 |𝒗 | = 0

𝑣𝑟 = 𝑈 cos 𝜃 + 𝑚

𝑟2 = 0 → 𝑟 =

√
𝑚

𝑈
, 𝜃 = 𝜋. (30)

つまり, 𝑥 軸のとある一点では湧き出しによる速度と一様流がちょうど打ち
消しあう. よどみ点は図中では Aで示される点である.

• 遠方での広がり
湧き出した流体は無限の下流で半径 bの円筒状の領域を占める. そこでは流
速𝑈 になると考える. 流量の保存から

𝑄 = 4𝜋𝑚 = 𝜋𝑏2𝑈, (31)

𝑏 = 2
√

𝑚

𝑈
. (32)

6.3.4二重湧き出し (doublet)

𝜙 = −𝑚
𝑟
+ 𝑚

𝑟1
(33)

r r1

Q Q1

図 5: 二重湧き出しを考える設定.

𝑟1 → 𝑟 の極限を考える (湧き出しと吸い込みが無限に近接している場合)

𝜙 = −𝑚
𝑟
+ 𝑚

𝑟 + 𝛿𝑟
= −𝑚

𝑟
+ 𝑚

𝑟 + 𝛿𝑟
= −𝑚𝛿𝑟

𝑟2 = −𝑚𝛿𝑥 cos 𝜃
𝑟2 → −𝜇 cos 𝜃

𝑟2 = −𝜇 𝑥

𝑟3 (34)

ただし 𝜇 ≡ lim𝑚𝛿𝑥 が一定となるような極限をとった.
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一般の方向 𝒆 = (𝑙, 𝑚, 𝑛)の場合は

𝜙 = 𝒆 · grad
𝜇

𝑟
(35)

この流れを, Q点に置かれた軸方向 𝒆,強さ 𝜇の二重湧き出しによる流れという. 二
重湧き出しの流れを図 6に示す.

図 6: 二重湧き出し. 𝑥 軸上の原点付近に湧き出しと吸い込みを置いた場合.

6.3.5ランキンの卵型

𝜙 = 𝑈𝑥 − 𝑚

𝑟
+ 𝑚

𝑟1
(𝑚 > 0) (36)

図 7: ランキンの卵型. 原図は今井功 (1973)「流体力学 (前編)」,裳華房の 3-11図.

6.4二次元ポテンシャル流

6.4.1複素ポテンシャルによる流れ場の表現

• 二次元の渦無し (rot𝒗 = 0)で,非圧縮 (div𝒗 = 0)な流体は,速度ポテンシャル
と流線関数を用いて

𝑣𝑥 =
𝜕𝜙

𝜕𝑥
= −𝜕𝜓

𝜕𝑦
, 𝑣𝑦 =

𝜕𝜙

𝜕𝑦
=
𝜕𝜓

𝜕𝑥
(37)
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と書ける. したがって, 𝜙, 𝜓 で定義される 𝑧 = 𝑥 + 𝑖𝑦 の複素関数

𝑓 = 𝜙 − 𝑖𝜓 (38)

はコーシーリーマンの定理によって解析関数である. 𝑓 [(m2 sec−1,m2 sec−1)]
を流れの複素ポテンシャルと言う.

• 流れ場は複素ポテンシャル 𝑓 を用いて

𝑣𝑥 − 𝑖𝑣𝑦 =
𝑑 𝑓

𝑑𝑧
= 𝑞𝑒−𝑖𝜃 (39)

と表現される.

𝑣𝑥 = 𝑞 cos 𝜃, 𝑣𝑦 = 𝑞 sin 𝜃 (40)

• 循環 Γと流量 𝑄 は

Γ =
∮

𝒗 · 𝑑 𝒍 =
∮

grad𝜙 · 𝑑 𝒍 =
∮

𝑑𝜙, (41)

𝑄 =
∮

𝒗 · 𝑑𝑺 =
∮

(𝒌 × grad𝜓) · 𝑑 ( 𝒍 × 𝒌) (42)

=
∮

𝒌 × (𝒌 × grad𝜓) · 𝑑 𝒍 = −
∮

grad𝜓 · 𝑑 𝒍 = −
∮

𝑑𝜓 (43)

ここで, 𝒌 は 𝑧軸方向の単位ベクトルである. よって∮
𝑑 𝑓

𝑑𝑧
=
∮

𝑑𝑓 =
∮

𝑑𝜙 − 𝑖

∮
𝑑𝜓 = Γ + 𝑖𝑄 (44)

単連結領域なら 𝑓 が解析関数であることにより∮
𝑑𝑓 = Γ + 𝑖𝑄 = 0 (45)

6.4.2 2次元渦無し・非圧縮流体の簡単な例

• 一様な流れ𝑈 (𝑈 は実定数)

𝑓 = 𝑈𝑧 = 𝑈𝑥 + 𝑖𝑈𝑦 (46)

よって,
𝜙 = 𝑈𝑥, 𝜓 = −𝑈𝑦. (47)

• 湧き出し,吸い込み

𝑓 = 𝑚 ln 𝑧 = 𝑚 ln(𝑟𝑒𝑖𝜃) = 𝑚(ln 𝑟 + 𝑖𝜃) (48)

よって
𝜙 = 𝑚 ln 𝑟, 𝜓 = −𝑚𝜃 (49)

流線 𝜓 = 𝑐𝑜𝑛𝑠𝑡 は 𝜃 = 𝑐𝑜𝑛𝑠𝑡 で与えられる (原点から出る放射線状の直線群).
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x

y

φ=一定

Ψ=一定

図 8: 湧き出し,吸い込み

• 二重湧き出し

𝑓 = 𝑚 ln(𝑧 − 𝑎) − 𝑚 ln(𝑧 + 𝑎) = 𝑚 ln
𝑧 − 𝑎

𝑧 + 𝑎
(50)

これの 𝑎 → 0の極限をとると
𝑓 = −𝜇

𝑧
(51)

ただし 𝜇 ≡ lim
𝑎→0

2𝑚𝑎これは二次元の二重湧き出し.

• 角 (角度 𝜋/𝑛で与えられる)をまわる流れ

𝑓 = 𝐴𝑧𝑛 = 𝐴𝑟𝑛𝑒𝑖𝑛𝜃 , 𝐴 > 0, 𝑛 > 0 (52)

π/n
O

図 9: (左図) 𝑛 > 1の場合の角をまわる流れのイメージ図. (右図) 𝑛 = 3の場合の質
量流線関数.

流れのポテンシャルと流線関数は

𝜙 = 𝐴𝑟𝑛 cos 𝑛𝜃 𝜓 = −𝐴𝑟𝑛 sin 𝑛𝜃 (53)

𝜓 = 0となるのは 𝜃 = 𝜋/𝑛. つまり,原点から出る放射線.

角度が 𝜋より大きい,つまり, 0 < 𝑛 < 1のとき (角を曲がる流れ)は

|𝒗 | = | 𝑑 𝑓

𝑑𝑧
| = |𝑛𝐴𝑧𝑛−1 | → ∞, 𝑟 → 0 (54)

となる.
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π/n

図 10: 角をまわる流れ. 0 < 𝑛 < 1の場合

• 渦糸

𝑓 = −𝑖𝜅 ln 𝑧 (55)

これは,湧き出しに対する速度ポテンシャルと流れの関数の役割を入れ換え
たもの. したがって,流線は原点を中心とする同心円群.

x

y
φ=一定

Ψ=一定

速度ポテンシャル

流線

図 11: 渦糸の速度ポテンシャルと流線

6.4.3円柱のまわりの流れ

速度 𝑈 の一様流中に静止する円柱のまわりの流れを考える. 図 12 に示すように,
一様流の方向に 𝑥 軸をとり,円柱の半径を 𝑎とする.

図 12: 円柱のまわりの一様流. 原図は今井功 (1973)「流体力学 (前編)」,裳華房の
4-15図.

• 円柱のまわりの循環が 0の場合
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一様流に対して円柱は 𝑥 軸の負の方向に 𝑈 なる速度で動くことになるから,
複素速度ポテンシャルは以下のようになる.

𝑓 = 𝑈𝑧︸︷︷︸
一様流

+ 𝑈
𝑎2

𝑧︸︷︷︸
2重わきだし

. (56)

この 𝑓 が境界条件 (円柱表面で 𝑣𝑟 = 0)を満たしていることは以下のように
確認できる. ポテンシャルは

𝑓 = 𝜙 − 𝑖𝜓 (57)

なので,

𝑓 = 𝑈𝑧 +𝑈
𝑎2

𝑧
= 𝑈𝑟𝑒𝑖𝜃 +𝑈𝑎2𝑟−1𝑒−𝑖𝜃 = 𝑈𝑟 (cos 𝜃 + 𝑖 sin 𝜃) +𝑈𝑎2𝑟−1 (cos 𝜃 − 𝑖 sin 𝜃)

(58)

これより

𝜙 = 𝑈𝑟 cos 𝜃 +𝑈
𝑎2 cos 𝜃

𝑟
, (59)

𝜓 = −𝑈𝑟 sin 𝜃 +𝑈
𝑎2 sin 𝜃

𝑟
. (60)

速度は

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
= 𝑈 cos 𝜃 −𝑈

𝑎2 cos 𝜃
𝑟2 , (61)

𝑣𝜃 =
1
𝑟

𝜕𝜙

𝜕𝜃
= −𝑈 sin 𝜃 −𝑈

𝑎2 sin 𝜃
𝑟2 (62)

円柱の表面 𝑟 = 𝑎を考えると, 𝜓 = 0になる. 速度は次のようになる.

𝑣𝑟 = 𝑈 cos 𝜃 −𝑈
𝑎2 cos 𝜃

𝑎2 = 0, (63)

𝑣𝜃 = −𝑈 sin 𝜃 −𝑈
𝑎2 sin 𝜃

𝑎2 = −2𝑈 sin 𝜃 (64)

よって,境界条件は満たされていることが確認された.

この場合の流れ場は図 13のようになる.

• 循環 (−Γ′)を伴う場合
速度𝑈 の一様流中に静止する円柱のまわりの流れの複素ポテンシャルは

𝑓 = 𝑈𝑧 +𝑈
𝑎2

𝑧
+ 𝑖

Γ′

2𝜋
ln 𝑧 [m2 sec−1,m2 sec−1] (65)

これは,循環無しの場合の円柱の回りの流れに渦糸の流れを重ね合わせたも
の. よって, Γ′ > 0の場合,流れは上半平面では循環の無い場合に比べて加速
され,下半平面では減速される.
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図 13: 円柱のまわりの一様流. Γ = 0の場合.

𝑓 の表式より,

𝜙 = 𝑈𝑟 cos 𝜃 +𝑈
𝑎2

𝑟
cos 𝜃 − Γ′

2𝜋
𝜃, (66)

𝜓 = −𝑈𝑟 sin 𝜃 +𝑈
𝑎2

𝑟
sin 𝜃 − Γ′

2𝜋
ln 𝑟 (67)

よって

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
= 𝑈 cos 𝜃 −𝑈

𝑎2

𝑟2 cos 𝜃, (68)

𝑣𝜃 =
1
𝑟

𝜕𝜙

𝜕𝜃
= −𝑈 sin 𝜃 −𝑈

𝑎2

𝑟2 sin 𝜃 − Γ′

2𝜋𝑟
(69)

淀み点の位置を求める. 複素速度は
𝑑 𝑓

𝑑𝑧
= 𝑈 −𝑈

𝑎2

𝑧2 + 𝑖
Γ′

2𝜋𝑧
(70)

淀み点は

0 = |𝒗 | =
����𝑑 𝑓

𝑑𝑧

���� = ����𝑈 −𝑈
𝑎2

𝑧2 + 𝑖
Γ′

2𝜋𝑧

���� (71)

よって

𝑧 = −𝑖 Γ′

4𝜋𝑈
±

√
𝑎2 −

(
Γ′

4𝜋𝑈

)2
(72)

Γ′ ≤ 4𝜋𝑈 の時は |𝑧 | = 𝑎で淀み点は円柱上, Γ′ > 4𝜋𝑈 の時は淀み点は円柱か
らはなれる.

• 円柱に働く力

円柱表面上によどみ点が存在する場合には,以下のように円柱に働く力を求
めることができる.

円柱表面上における速度分布は

𝑣𝜃 |𝑟=𝑎 = −2𝑈 sin 𝜃 − Γ′

2𝜋𝑎
. (73)
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Γ′ ≤ 4𝜋𝑈𝑎 Γ′ = 4𝜋𝑈𝑎 Γ′ ≥ 4𝜋𝑈𝑎.

図 14: 円柱まわりの一様流の Γ′ 依存性. (a) Γ′ ≤ 4𝜋𝑈𝑎, (b) Γ′ = 4𝜋𝑈𝑎, (c)
Γ′ ≥ 4𝜋𝑈𝑎.

ベルヌーイの定理からよどみ圧と円柱上の任意の点における 𝑝 + 𝜌/2𝑣2は等
しい. よって,表面圧力分布は, 𝑝0 をよどみ圧として,

𝑝0︸︷︷︸
よどみ点

= 𝑝 + 𝜌0
2
𝑣2
𝜃︸     ︷︷     ︸

円柱上の点

(74)

𝑝 = 𝑝0 −
𝜌0
2
𝑣2
𝜃 (75)

= 𝑝0 −
𝜌0𝑈

2

2

(
2 sin 𝜃 + Γ′

2𝜋𝑎𝑈

)2
[N m−2] = [kg m−1 sec−2] (76)

となる. 単位長さあたりに円柱に働く力は以下のようになる.

𝑭 = −
∫

𝑝𝒏𝑑𝑙 (77)

𝐹𝑥 = −
∫ 2𝜋

0
𝑝 cos 𝜃𝑎𝑑𝜃 (78)

= −
∫ 2𝜋

0
cos 𝜃

[
𝑝0 −

𝜌0𝑈
2

2

(
2 sin 𝜃 + Γ′

2𝜋𝑎𝑈

)2
]
𝑎𝑑𝜃 (79)

= −
∫ 2𝜋

0

𝜕

𝜕𝜃

[
𝑝0 sin 𝜃 − 𝜌0𝑈

2

12

(
2 sin 𝜃 + Γ′

2𝜋𝑎𝑈

)3
]
𝑎𝑑𝜃 (80)

= 0 (81)

𝐹𝑦 = −
∫ 2𝜋

0
𝑝 sin 𝜃𝑎𝑑𝜃 (82)

= −
∫ 2𝜋

0
sin 𝜃

[
𝑝0 −

𝜌0𝑈
2

2

(
2 sin 𝜃 + Γ′

2𝜋𝑎𝑈

)2
]
𝑎𝑑𝜃 (83)

=
∫ 2𝜋

0

𝜌0𝑈
2

2
2

Γ′

𝜋𝑎𝑈
(sin 𝜃)2𝑎𝑑𝜃 (84)

= 𝜌0𝑈Γ′ [kg sec−2] = [N m−1] (85)

となる.
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6.5一様流中に静止する球のまわりの流れ
• 速度ポテンシャル 𝜙は

𝜙 = 𝑈

(
𝑟 + 𝑎3

2𝑟2

)
cos 𝜃 (86)

となる. 速度は

𝑣𝑟 =
𝜕𝜙

𝜕𝑟
= 𝑈

(
1 − 𝑎3

𝑟3

)
cos 𝜃, (87)

𝑣𝜃 =
1
𝑟

𝜕𝜙

𝜕𝜃
= −𝑈

(
1 + 𝑎3

2𝑟3

)
sin 𝜃 (88)

となる. この解が境界条件を満たすことを確認する: 𝑟 = 𝑎では

𝑣𝑟 = 0, (89)

𝑣𝜃 = −3𝑈
2

sin 𝜃 (90)

• 球のまわりの流れは,一様流と二重わきだしの重ね合わせ.

• 抵抗力は働かない.
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