Mellor and Yamada (1974) の乱流クロージャモデル A Turbulence Closure Model of Mellor and Yamada (1974)

北守 太一 Kitamori Taichi

北海道大学理学部地球科学科地球流体力学研究室 4 年

2004/02/03

1. 目的

Mellor (1973) および Mellor and Yamada (1974) の乱流クロージャモデルの議論を紹介する.

Mellor (1973) および Mellor and Yamada (1974)

現在の大気モデルに用いられている代表的な乱流クロージャモデル.

2. 数値計算で乱流の扱うときの問題

乱流の重要性

乱流はそれ自身よりも大きなスケールの運動に影響 数値計算の重要性

大気の運動を記述する方程式は解析的に解けない 数値計算で近似解を求める

数値計算の問題点

格子点間隔以下の運動は切り捨て 乱流の影響が無視される 現象を正しく表現できない

3. 物理量の扱い

物理量を2つの成分に分離する.

平均成分 格子点間隔スケールの運動を記述 変動成分 格子点間隔以下のスケールの運動を記述 格子点間隔以下の運動が考慮可能に 乱流の影響による項が明示的に現れる

4. 平均成分の方程式

$$\frac{\partial U_i}{\partial x_i} = 0, \tag{1}$$

$$\frac{\partial U_i}{\partial t} + \frac{\partial}{\partial x_k} (U_i U_k + \overline{u_i u_k}) = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} - g_i \beta \Theta, \qquad (2)$$

$$\frac{\partial \Theta}{\partial t} + \frac{\partial}{\partial x_k} (U_k \Theta + \overline{u_k \theta}) = 0.$$
 (3)

 U_i : 風速の平均成分, u_i : 風速の変動成分, Θ : 温位の平均成分, θ : 温位の変動成分, P: 圧力勾配の平均成分, $g_i = (0,0,g)$: 重力加速度, β : 体積変化率.

 $\overline{u_iu_j}$, $\overline{u_i\theta}$ の項があるので方程式が閉じない。 $\overline{u_iu_j}$, $\overline{u_i\theta}$ の方程式を求めても3次のモーメントの項が現れ、やはり方程式は閉じない.

5. Mellor(1973)のクロージャモデル

以下のクロージャ仮定を導入し方程式を閉じる.

予報変数 $\overline{u_iu_j}$, $\overline{u_i\theta}$, $\overline{\theta^2}$ 以外の乱流統計量は

 $\overline{u_iu_j}$, $\overline{u_i\theta}$, $\overline{\theta^2}$

乱流運動エネルギー $q\equiv\overline{u_i^2}$ 現象の特徴的なスケール

で置き換えることができる.

6. Mellor and Yamada (1974) によるクロージャモデルの簡略化

Mellor(1973)のクロージャモデルの方程式数

平均成分:5

乱流統計量:10

計算時間がかかるため簡略化

乱流は等方的であると仮定

異方性を示す部分は小さい

異方性を代表するパラメータαを導入

a のオーダーを持つ項は小さい

a を用いて各項のオーダーを比較して微小項を省略

7. 簡略化の方法

時間変化項のオーダーの仮定 散逸項に対する比 省略される項のオーダー の決め方により4段階のレベルに分類

表1: 各レベルのモデルにおいた仮定

レベル	4	3	2	1
時間変化項	O(1)	O(a)	$O(a^2)$	$O(a^2)$
省略される項	なし	$O(a^2)$	$O(a^2)$	O(a)
乱流統計量の 時間発展方程式数	10	2	0	0

レベル4モデルは Mellor (1973) のモデルと同じ

8. レベル4モデル

$$\frac{D}{Dt}(\overline{u_{i}u_{j}}) - \frac{\partial}{\partial x_{k}} \left[q\lambda_{1} \left\{ \frac{\partial}{\partial x_{k}} (\overline{u_{i}u_{j}}) + \frac{\partial}{\partial x_{i}} (\overline{u_{j}u_{k}}) + \frac{\partial}{\partial x_{j}} (\overline{u_{i}u_{k}}) \right\} \right] \\
= -\overline{u_{i}u_{k}} \frac{\partial U_{j}}{\partial x_{k}} - \overline{u_{j}u_{k}} \frac{\partial U_{i}}{\partial x_{k}} - \beta (g_{j}\overline{u_{i}\theta} + g_{i}\overline{u_{j}\theta}) \\
-\frac{q}{3l_{1}} (\overline{u_{i}u_{j}} - \frac{\delta_{ij}}{3}q^{2}) + Cq^{2} \left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) - \frac{2}{3} \frac{q^{3}}{\Lambda_{1}} \delta_{ij}, \qquad (4)$$

$$\frac{D}{Dt}(\overline{u_{i}\theta}) - \frac{\partial}{\partial x_{k}} \left[q\lambda_{2} \left\{ \frac{\partial}{\partial x_{k}} (\overline{u_{i}\theta}) + \frac{\partial}{\partial x_{i}} (\overline{u_{k}\theta}) \right\} \right] \\
= -\overline{u_{i}u_{k}} \frac{\partial\Theta}{\partial x_{k}} - \overline{u_{k}\theta} \frac{\partial U_{i}}{\partial x_{k}} - \beta g_{i}\overline{\theta^{2}} - \frac{q}{3l_{2}} \overline{u_{i}\theta}, \qquad (5)$$

$$\frac{D\overline{\theta^{2}}}{Dt} - \frac{\partial}{\partial x_{k}} \left(q\lambda_{3} \frac{\partial\overline{\theta^{2}}}{\partial x_{k}} \right) = -2\overline{u_{k}\theta} \frac{\partial\Theta}{\partial x_{k}} - 2\frac{q}{\Lambda_{2}} \overline{\theta^{2}}. \qquad (6)$$

9. レベル3モデル

$$\frac{Dq^{2}}{Dt} - \frac{\partial}{\partial x_{k}} \left[\frac{5}{3} q \lambda_{1} \frac{\partial q^{2}}{\partial x_{k}} \right] = -2 \overline{u_{i} u_{k}} \frac{\partial U_{i}}{\partial x_{k}} - 2 \beta g_{k} \overline{u_{k} \theta} - 2 \frac{q^{3}}{\Lambda_{1}}, \tag{7}$$

$$\overline{u_{i} u_{j}} = \frac{\delta_{ij}}{3} q^{2} - \frac{3l_{1}}{q} \left[(\overline{u_{i} u_{k}} - Cq^{2} \delta_{ik}) \frac{\partial U_{j}}{\partial x_{k}} + (\overline{u_{j} u_{k}} - Cq^{2} \delta_{jk}) \frac{\partial U_{i}}{\partial x_{k}} - \frac{2}{3} \delta_{ij} \overline{u_{k} u_{l}} \frac{\partial U_{l}}{\partial x_{k}} \right]$$

$$-3 \frac{l_{1}}{q} \beta \left(g_{j} \overline{u_{i} \theta} + g_{i} \overline{u_{j} \theta} - \frac{2}{3} \delta_{ij} g_{l} \overline{u_{k} u_{l}} \frac{\partial \overline{U_{l}}}{\partial x_{k}} \right)$$

$$+3 \frac{l_{1}}{q} \frac{\partial}{\partial x_{k}} \left\{ \frac{q \lambda_{1}}{3} \left(\delta_{ik} \frac{\partial q^{2}}{\partial x_{j}} + \delta_{jk} \frac{\partial q^{2}}{\partial x_{i}} - \frac{2}{3} \delta_{ij} \frac{\partial q^{2}}{\partial x_{k}} \right) \right], \tag{8}$$

$$\overline{u_{i} \theta} = -3 \frac{l_{2}}{q} \left(\overline{u_{i} u_{k}} \frac{\partial \Theta}{\partial x_{k}} + \overline{u_{k} \theta} \frac{\partial U_{i}}{\partial x_{k}} + \beta g_{i} \overline{\theta^{2}} \right), \tag{9}$$

$$\frac{D\overline{\theta^2}}{Dt} - \frac{\partial}{\partial x_k} \left(q \lambda_3 \frac{\partial \overline{\theta^2}}{\partial x_k} \right) = -2\overline{u_k \theta} \frac{\partial \Theta}{\partial x_k} - 2\frac{q}{\Lambda_2} \overline{\theta^2}. \tag{10}$$

(9)

10. レベル2モデル

 $\overline{\theta^2} = -\frac{\Lambda_2}{a} \overline{u_k \theta} \frac{\partial \Theta}{\partial x_k}.$

$$\frac{q^{3}}{\Lambda} = -\overline{u_{i}}\overline{u_{k}}\frac{\partial U_{i}}{\partial x_{k}} - \beta g_{k}\overline{u_{k}}\overline{\theta}, \tag{11}$$

$$\overline{u_{i}}\overline{u_{j}} = \frac{\delta_{ij}}{3}q^{2} - \frac{3l_{1}}{q}\left[\left(\overline{u_{i}}\overline{u_{k}} - Cq^{2}\delta_{ik}\right)\frac{\partial U_{j}}{\partial x_{k}}\right]$$

$$+\left(\overline{u_{j}}\overline{u_{k}} - Cq^{2}\delta_{jk}\right)\frac{\partial U_{i}}{\partial x_{k}} - \frac{2}{3}\delta_{ij}\overline{u_{k}}\overline{u_{l}}\frac{\partial \overline{U_{l}}}{\partial x_{k}}\right]$$

$$-3\frac{l_{1}}{q}\beta\left(g_{j}\overline{u_{i}}\overline{\theta} + g_{i}\overline{u_{j}}\overline{\theta} - \frac{2}{3}\delta_{ij}g_{l}\overline{u_{l}}\overline{\theta}\right), \tag{12}$$

$$\overline{u_{i}}\overline{\theta} = -3\frac{l_{2}}{q}\left(\overline{u_{i}}\overline{u_{k}}\frac{\partial \Theta}{\partial x_{k}} + \overline{u_{k}}\overline{\theta}\frac{\partial U_{i}}{\partial x_{k}} + \beta g_{i}\overline{\theta^{2}}\right), \tag{13}$$

(14)

11. レベル1モデル

$$\frac{q^3}{\Lambda} = -\overline{u_i u_k} \frac{\partial U_i}{\partial x_k} - \beta g_k \overline{u_k \theta}, \tag{15}$$

$$\overline{u_i u_j} = \frac{\delta_{ij}}{3} q^2 - q l_1 \left(\frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_j} \right), \tag{16}$$

$$\overline{u_i\theta} = -ql_2 \frac{\partial\Theta}{\partial x_i} - \frac{3\beta l_2}{q} g_i \overline{\theta^2}, \tag{17}$$

$$\overline{\theta^2} = -\frac{\Lambda_2}{q} \overline{u_k \theta} \frac{\partial \Theta}{\partial x_k}. \tag{18}$$

12. Mellor and Yamada (1974)の シミュレーションによる比較

モデル: レベル4からレベル2までのモデルに境界層 近似を施したモデル

水平一様を仮定

計算領域:鉛直方向は 0-5200 m

格子点数: 0-1000 m: 20個 (対数的に分布)

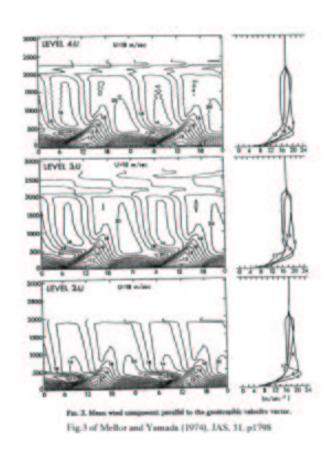
1000-5200 m: 60個

計算時間:10日間(計算が安定するまでに3日間を要

する)

時間ステップ:1分

13. 計算結果



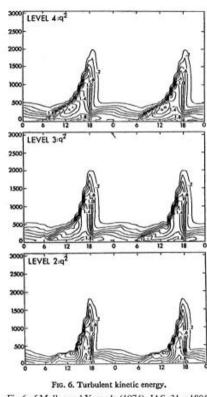


Fig.6 of Mellor and Yamada (1974), JAS, 31, p1801

図1:(左)風速の平均成分.(右)乱流エネルギー.縦軸は高度(m). 横 軸は時間. 上から順にレベル4, 3, 2 (Mellor and Yamada (1974)).

14. 計算結果 まとめ

どのレベルも互いに類似した結果を得る

境界層の厚さ

レベル3のモデルはレベル4のモデルと比べて結果はほとんど変わらないが計算時間は短い.

レベル2のモデルはレベル4,3のモデルと比べて重要な特徴は変わらないが計算時間は短い.

15. まとめ

Mellor (1973)のクロージャモデル

クロージャ仮定を導入して方程式を閉じた

Mellor and Yamada (1974)のクロージャモデル

Mellor (1973)の乱流クロージャモデルを簡略化. 簡略化の度合によって4段階のレベルに分類.

Mellor and Yamada (1974)の大気境界層シミュレーション

レベル4,3,2,のモデルの結果を比較 レベル3,およびレベル2は計算効率がよい

16. 参考文献

- [1] Boussinesq, J., 1877: Theeorie de l'ecoulement tourbillant. *Mem. Presentes par divers Savants Acad. Sci. Inst. Fr.*, **23**, 46–50.
- [2] Donaldson, C. duP., 1973: Construction of a dynamic model of the production of atmospheric turbulence and the dispersal of atmospheric pollutants. *Workshop on Micrometeorology*, Boston, Amer. Meteor. Soc., 313–390.
- [3] Mellor, G. L., 1973: Analytic Prediction of the Properties of Stratified Planetary Surface Layers. J. Atmos. Sci., **30**, 1061–1069.
- [4] Mellor, G. L., and T. Yamada, 1974: A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. *J. Atmos. Sci.*, **31**, 1791–1806.
- [5] 小高正嗣, 1997: Mellor, Yamada による境界層モデル. 地球流体電脳倶楽部, http://dennou-h.gfd-dennou.org/arch/review/zz1974/my/pub/index.htm.
- [6] 小高正嗣, 1998: Klemp and Wilhelmson (1978) による乱流モデル. 地球流体電脳倶楽部, http://dennou-h.gfd-dennou.org/arch/review/zz1978/kw/pub/index.htm.
- [7] 山田哲司, 1999: 乱流クロージャモデル, 気象研究ノート, 第196号, 103-112.
- [8] 山田哲司, 1992: 第3章3次元大気乱流拡散モデル. 大気環境シミュレーション-大気の流れと拡散-, 総合編集横山長之, 白亜書房, 134-202.