Baroclinic dynamics in the presence of slopes
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Overview
0. shelf seas and slopes, baroclinic eddies, and it’s parameterisation

1. baroclinic turbulence over slopes
— nonlinear simulations
— parameterisations
— GEOMETRIC: an eddy-mean interaction framework

— parameterising suppression of fluxes

2. mechanism for slope suppression
— linear instability point of view?
— revisiting the (sloped) Eady problem
— interpretation in terms of CRWs
— GEOMETRIC analysis



Shelf seas + continental slopes

Figure: Locations of shelf seas denoted by the cyan colour. Taken from Wikipedia
(https://en.wikipedia.org/wiki/Continental_shelf) made from NOAA data.

> exchange between shelves and open ocean important



Baroclinic eddies




Baroclinic eddies

Sea Surface Height Anomalies, 1992-2011

oct 1992

Data from Radar Altimetry 1992



Baroclinic instability

» baroclinic instability
—
uniform

shear — reduces flow shear (= reducing
—

tilt in isopycnal / isentrope)

— fueled by available potential
energy

> also important for momentum transport
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eddy form stress < eddy buoyancy flux

vertical momentum transfer «— lateral heat transfer

(figures from David Marshall)



Parameterisation
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Part 1: baroclinic turbulence over slopes
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> most of the following is Huaiyu’s PhD work (currently post-doc at UCLA)



Baroclinic simulation over slopes

» wind forced simulation
in MITgem (2km
resolution)

— downwelling
favourable wind forcing

— strong jet along shelf
break

— eddies on and off
shelf have different
length-scales (~ L) and
different properties
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Q. how to parameterise?
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Parameterisation
> Gent-McWilliams (GM) scheme:

WV = kg
— this one is really an eddy-induced
advection

— flattens isopycnals, parameterisation
of form stress

(resembles but is not exactly thickness diffusion)

Gent & McWilliams (1990); Gent et al. (1995)

> widely used in ocean GCMs, many good things about it
— positive-definite sink of APE
— reduces spurious deep convection in models



Parameterisation
> Gent-McWilliams (GM) scheme:

WV = kg
— this one is really an eddy-induced
advection

— flattens isopycnals, parameterisation
of form stress

(resembles but is not exactly thickness diffusion)

Gent & McWilliams (1990); Gent et al. (1995)

> widely used in ocean GCMs, many good things about it
— positive-definite sink of APE
— reduces spurious deep convection in models

> eddy energy E < eddy activity, so

fgm = rgm(f(E),...) 7

mixing len eor KRem ™~ (e.g. Eden & Greatbatch, 2008; Jansen et al., 2015)
— g length theory = kgm ~ VE (eg



GEOMETRIC framework



GEOMETRIC framework

Under QG dynamics, mean equation may be written as

o -M+ P N 0
=S R 0

» rank 2 tensor E encodes all fluctuation quantities

1—
M= Ev’z —u?, N=uv,

1 —
P=_—p2
2N0b’

fo =% fo =
R = ﬁgu/b/, S = ﬁgv b/,

— Eliassen—Palm flux tensor

Q. parameterise in a symmetry-preserving way?

Marshall et al. (2012); Maddison & Marshall (2013) [see also Hoskins et al. (1983)]



Parameterisation: GEOMETRIC

E=001(s=0,1=0) 0 k=08 (6=0,1=0) 3 E=110(s=0,1=0)

0.010 - —
0.005 1 oS
x’,’
0.000 x 0.0
P x
-0.005 o 10.5
/’ # ’
~0.010 ‘ ‘ 1.0 : ‘ ‘
~0.010-0.0050.000 0.005 0.016-1.0 0.5 00 05

Figure: Demonstration of eddy variance ellipses for Eady problem (v’ and b’ here).

> consider geometric parameters relating to eddy variance ellipses
— anisotropy parameters v,
— angle parameters ¢

> note ¢, relates to actual eddy shape (cf. Tamarin et al., 2016)

— ¢p does not, but the vertical angle parameter tan2¢; = v, tan 2\ does
(e.g. Youngs et al., 2017)



Parameterisation: GEOMETRIC

1—— _

M= Evfz —u? = —yuEcos2¢mcos’ A, N =uw'v/ = ~uE sin2¢y, cos® A,
—_ 1 2 — 02

P= N b2 = Esin” A,

R= ﬁ) ’b’—'ybI{—IEcosqﬁbng)\ S = fo ’b’:'yblj\(—]Esmqbbst)\7

with geometric parameters

vV M? + N2 No /R? + 52
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Efcos A, Efsm A, tan )\fK.

Marshall et al. (2012); Maddison & Marshall (2013)



GEOMETRIC framework

» GM scheme close for buoyancy fluxes

R = Z{IZ 4 —'yhiloEcoscﬁbsinZ)\,

fo v’b’ = ’y;,{,—E sin ¢y sin 2.

> ||E||> < E, tensor may be bounded in

terms of eddy energy, and bound
implies

ob/0z)"/?
Kgm = (\E% = i |
[Vb[? it
> v~ 4, sin2\(cos ¢y, sin ¢p) is non-dimensional and |o| < 1!
— eddy efficiency parameter, tunable in parameterisations

— closed by including a prognostic eddy energy budget for E

Marshall et al. (2012); Maddison & Marshall (2013); Mak ef al. (2017, 2018, 2022a,b)



Parameterisation: GEOMETRIC
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> get eddy saturation (mathematical reasons for this, ask me if interested)

Mak et al. (2017, 2018)



Parameterisation: GEOMETRIC
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> reduces sensitivity of ocean heat content in ‘realistic’ model

(NEMO ORCAZ2 here, but ‘works” also in ORCA1)

Mak et al. (2022a)



GEOMETRIC over Slopes (Wei, et al., 2022)

oo E > diagnosed diffusivity ‘suppressed’

[o #e Kun, = = Ky, —ao'J'E,
10 over slope region
= — least-squares type fitting for an
RS over-determined system (Bachman &
& Fox-Kemper, 2013)
=
£ 10° > suppression function fitted as
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GEOMETRIC over slopes w22

» suppressed GEOMETRIC ok from diagnostics, but in prognostic runs?

(b) Az =25 km
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GEOMETRIC over slopes w22
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> relative errors of new variant is lowest

— nonlinear feedbacks, xgm too large over shelves has effect over the
domain via a ‘pivot” mechanism



Summary

» introduced GEOMETRIC framework
— parameterisation in terms of geometric parameters
— a framework for analysing eddy-mean interactions

— key role of the o eddy efficiency parameter

> suppression of eddy-mean interaction over slopes from simulations
— can be represented through suppression of « (Wei et L., 2022)
— functions reasonably well in prognostic calculations (wei et at., 2024)
— ongoing work to see impacts in global models

— recent experimental evidence for suppression of o (Chenget at., 2025)



Part 2: mechanism for slope suppression

PHYSICAL REVIEW FLUIDS 9, 083905 (2024)

Edge-wave phase shifts versus normal-mode phase tilts in an Eady problem
with a sloping boundary

J.Mak®" N.Harnik® E. Heifetz® G. Kumar' E.Q.Y. Ong

» focus on linear instability of (modified) Eady problem



Recap: suppression over slopes

> suggested suppression is

N 1
Kgm = (‘]'-GEOM(S)EWa Faeeom(S) = TR

> from simulation results, it’s not E or N/M? that are suppressed, so

a — aFceom(S) ?

Q. which part of & ~ y, sin 2\(cos ¢y, sin ¢y) is being suppressed?

Q. why? mechanisms?



In the presence of a slope...
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> consider linear instability point of view

— modified Eady problem with a slope

figure inspired from Chen et al. (2020)



The equation

> standard QG, linear shear flow in vertical, u = Ue. = Az/H, be wise
and linearise:

0 0 f3 0™
(8t —|—Aza) (V 1/)—|—N2 9 =0, z € (—H,H),
9 9\ oy Aoy _ _
(a“a)&wax—o’ z=H,

9 o (A NjOH,\ 0% _ _
<8t Aax) oz (H % 8y) =0, z=-H



The equations

> sensible non-dimensionalisation (!!)

0 9 2 200 _
(at+za>(v¢+Faz =0, z e (-1,1),
0 oy oY —
(&*a)& ax = O z=1,
9 9\ oY _
<8t ax) 7z 1795 =0 z=-1
> with F? = (fL/NH)?, and key parameter is
_ &5 ) ey
~ 9y /| —0p/oz



The equations

» modal solutions, interior PV equations imply

(z) = acosh pz + bsinh pz, wr= (K +P)/F

» boundary conditions fix the constants a and b, leading to (C = cosh it
and S = sinh u)
§ /C S 5 1-6/2 C\[(1-6/2 S
0=7c? —+= — - - = - =
C+zu(s+C>”4M ( T S>< " C)

— solve analytically /numerically



Instability characteristics

=0

0+

00=¢

> reduced growth rates when 6 < 0 (‘prograde’ case)
» reduced bandwidth when § > 0, shuts off when § > 1

. mechanism?



CRW mechanism

AQ >0

AQ <0

» each CRW can interfere with each other
— domain of influence ~ Green’s function
— can affect amplitude and propagation
» phase-locking?
— from mean flow and other wave

— modal instability if phase-locked in constructively interfering
configuration



In the presence of a slope...
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In the presence of a slope...

a) b)

anticyclone

00,0/ 0y ~ + fyu NN
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> argument in terms of CRWs: § < 0 makes bottom wave faster
= bottom wave is such that (U +¢)
= for phase locking, want upper (U — c) 7, so upper ¢ \,

= Rossby waves c ~ k™!, sowant a larger k...? (Chen etal., 2020)



In the presence of a slope...

» standard Eady problem (no slope), 2d problem (I = 0)
— show normal-mode streamfunction ¢ = t(z)e!**~"

— leans into shear, diagnosed Aecigen = /2

1.0 <<
0.5 1 N~ H ‘ /
~__/ | ~__/
@ 0.0 Af‘-m =0.50 n'i
-0.54. i /RS e
-1.0 \\ 1 /,_fb\l /\
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In the presence of a slope...

» standard Eady problem (no slope), 2d problem (I = 0)
— show normal-mode streamfunction ¢ = t(z)e!**~"

— leans into shear, diagnosed Aecigen = /2

1.0 Q':// T ~—_"]
057 ~~1  / i
o 0.04 A:«.m Z0.50 n. )
PN NNV /;\\ [/
0.0 0.2 0.4 0.6 0.8

2n/k

Q. does the phase-tilt change with §?



In the presence of a slope...

» standard Eady problem (no slope), 2d problem (I = 0)
— show normal-mode streamfunction ¢ = t(z)e!**~"

— leans into shear, diagnosed Aecigen = /2

0.5 1 i / i ,

« 0.01 Adeigen = 0'._5‘071'5 - i
—os54 i ~l_ » /
-1.0 SN A /:'-r\\ : Y

0.0 0.2 0.4 0.6 0.8
2n/k

Q. does the phase-tilt change with §?

Q. is the normal-mode phase-tilt even the right thing to look at, since we
are talking about CRWs which are edge-waves?



Edge-wave basis
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Figure: Streamfunction eigenfunction of most unstable mode in standard Eady problem.

> eigenfunction as a superposition of CRWs, ¢ = v + 1/p?
— combination, would like it in edge-wave basis ¢t p or gr

Q. normal-mode phase-tilt is 7/2, but is it really /2 in the edge-waves
p &
phase-shift?



Edge-wave basis

> suppose 1/) wT + wg, and that § = gr + g

» modal solutions:

" Y
q =—H 1/1 + 2 ’
0z
with bcs (cf. Davies & Bishop, 1994, no buoyancy perturbation on other boundary)
OYr Oyp
5 =0, 5 =0.
Z =11 2 =11

> suppose we demand localised PV signature from edge-waves with (5 is
the Dirac §-distribution)

o=z +1),  Gr=ar(t)o(z—1),
then from the Green’'s function we have

. coshpu(l —2) ~ . coshu(l+2)
B br=—qr—————=.

ve = - wsinh2y T wsinh 2p



Edge-wave basis

> take previous thing, with r = Te'“” and §z = Be'#, shove it into
linearised EOM, tedious algebra gives

lg = 71( EsinA
Tot  psinh2uT ©
10B  k(1-8)T

ob _ _Kl—0) LA
Bot  psinh2uB T©
1 aeT o 1 B
_%5_4_[1 m(coshZu—i—TcosAe)}7
10ep (1-9) T
PR [ Lsinhop cosh 2 B cos Ae | |,

> Ae = er — ep, edge-wave phase-shift

— Ae > 0 means the top lags bottom



Edge-wave basis

» more illuminating if written in terms of amplitude ratio tany = T/B

and phase shift:
o _ _k sin Ae(cos 2y + dsin® v)
ot psinh2p ’
0Ae 2k

0 . 1 §
T m [(1 — E) cosh 2 — psinh 2 + (sinZ'y — Etan’y) COSA6:| .

> two-dimensional dynamical system
— analysis of phase portraits, related to transient/non-modal growth

— synchronised growth/decay related to modal instabilities, or fixed
points of the system

— bifurcations (Hopf bifurcation here...?)



Edge-wave basis
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Figure: Phrase portrait for the case of § = +0.5,5 = 0,and §

> § < 0is where bottom wave is stronger (B > T)

-versa

and vice

— v = arctan(T/B) < 7/4,i.e. B < T, consistent,

— in fact

for synchronised growth, we should have

7

B
- [¢| ==,

1
tan vy

» BUT A€ # w/2 (notremotely close!)



Edge-wave basis

w

w

(@) vr

0.5
0.0
—0.51

T
\
h
1
1
|
I
1
1
1
1
1
1

1
1
4
1
1
1
1
1
1
1

-1.0 T

1o () yp

0.5

0.0 Ac=0.73 7

T
1
1
1
1
1
1
T
1
1

—0.51

T
1
1
1
1
1
|
\
|
1
|
)
1

1o ‘ PSRN

0.0 0.2 0.4
2 /k

0.6

0.8

(c) U': Yr+p

1.0
! 1
0.5 ; $
0.04 Afg =0.50 7¢‘
-0.51 % 4
-1.0 H /;B ‘ :
0.0 0.2 0.4 0.6 0.8
2r/k

Figure: Edge-wave phase-shift vs normal-mode phase-tilt.

» mutual interaction matters!

— in terms of mutual wave propagation, and constructive interference

— /2 is for optimal constructive interference, but not necessarily
optimal for phase-locking (joint consideration required)

> Aceigen = 7/2 is a phase-tilt




Edge-wave basis

/T

(@ -%» ®) /
< 00fo _q— > amplitude ratio exactly as
-0 predicted varying with ¢, and
1o T physically consistent (6 < 0 has
B>T)

Acfm - > phase shifts expected for fixed &
v varying k

— in phase for k small, because
interaction strong (and
vice-versa)

> explanations just in terms of
phase-locking incomplete
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Figure: Amplitude ratio and edge-wave phase-shift over
parameter space.

> strength of interaction = phase shift and phase locking
— 0 \y —oo, B, interaction 7, can offset by k *



Edge-wave basis
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Figure: Amplitude ratio and edge-wave phase-shift over parameter space, from (left) edge-waves and (right)
eigenfunction itself.

> Accigen as efficiency for APE extraction? (dubious)




Edge-wave basis
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Figure: Schematic for § and its effects on the edge-waves.
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GEOMETRIC framework and links with CRWs?
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Figure: Demonstration of eddy variance ellipses for Eady problem (v and b’ here).

> for! =0, i.e. no meridional variation, #’ = 0, and so R = N = 0 while
M? =K, and so

=1, én=0, ¢ = g, o = £y, sin 2.

> gf)t ~ Ae?



GEOMETRIC framework and links with CRWs
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Figure: Geometric parameters for unstable modes.

« very similar to the growth rate

— proxy for eddy energy

extraction?

— a suppression mainly from
eddy anisotropy s (not shown;

expected?)

¢+ seems to have some relation
Wlth AE (cf. barotropic case of Tamarin et al.,
2016)

— certainly better correlation
than Aeceigen



Summary

> cross slope suppression through inefficient instability mechanism?

— really is « that is suppressed, suppresion through eddy anisotropy -,

Q. analytical links between GEOMETRIC and CRWS? (e.g. Tamarin et al., 2016)

— suggestive here numerically, did not attempt derivation (aziness..)

> edge-wave basis equivalent and physically more informative

— most works talk edge-waves phase-shifts, but present results for
normal-mode phase-tilts

— constructed system manually here, but can do this more generally
(using orthogonality in e.g., pseudo-momentum; Held, 1985)

— reduction to dynamical system formulation



OUthOk (theory biased)

» Eady problem is PT symmetric, and several others are obviously (!?)
PT symmetric

— Kelvin—Helmholtz (Qin et ai., 2019)
— (modified) Phillips problem (David et al., 2022)
— Eady with 3, Rayleigh problem (HD and MHD version), ...

> links with CRWs?
— phase-locking ~ spontaneous P77 symmetry breaking?

— bifurcations and stability boundaries ~ Krein collisions at
exceptional points

? QM + QFT techniques applied to classical systems?

— reality of spectrum (e.g. various works by Mostafazadeh) ~ no phase-locking ~
sufficient conditions for stability (e.s. Arol'd 1966 etc)?



Figure: Questions?






Parameterisation: GEOMETRIC
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Norksp: Releases.

NEMO 5.0-beta also brings with it the first steps towards compatibility with hybrid CPU-GPU computing by integrating PSyclone source-code processing into

project
o the build system. With 5.0-beta, passthrough testing (where code is processed by PSyclone but not transformed) of all SETTE configurations with the latest
N Nemo release version of PSyclone is successful. Ultimately, this source-code transformation facility can be used to identify computational kernels and insert compiler
directives in order to exploit parallelism. Achieving optimal performance by this method is not yet fully automatic but the transformations will be capable of
& Manage D generating code which will compile and run using GPU resources. At this stage, support for Nvidia compilers and hardware is more mature but progress is
underway to generalize the approach towards a wider range of platforms. Any beta testing in support of this goal is strongly encouraged.
Plan >
& G N NEMO 5.0 is the last version supporting both temporal schemes, MLF and RK3. Subsequent versions wil no longer include MLF.
% Build > Physics
@ Deploy .
OCEAN
| Releases
RGeometric parameterization for unresolved eddiesfIENIRISIRS [ 2573
& Monitor >

Geometric is a new parameterization of eddy induced velocities formulated by Marshall et al. (2012) and Mak et al. (2018, 2022). It is based on an
Analyze > consistent

1w

@ Help

« Light penetration scheme using § bands ( n_asr_sbd )
A new penetration scheme is implemented. It decomposes solar radiation into § bands (IR-RGB-UV) instead of the original 3 bands (RGB)

« MFS (Mediterranean Forecasting System) bulk formulae ( n_nFs )
BIOGEOCHEMISTRY
- TOP

New vertical sinking scheme ( 1n_sink_sig)

> in NEMO 5.0
— also in MITgem and MOM6



PT symmetry

9 0 2 2 P

(ar* (’T) (vw+F 24) =0, ze (-1,1),
0 9\ 0% _ _
(at + Bx) 9z " ox O z=1,
o0 9\ oy 0P _
(ﬁ Bx) 9z -a 6)83{ 0 z=-1

> with F* = (fL/NH)?, and key parameter is
Observation:

> parity symmetry P, (x,y) — (—x, —y), then (0, 9y) — (=0, —0y),
velocity (u,v) — (—u, —v), so streamfunction
Y~ Judy — —(=¢) =9

> time reversal symmetry T, t — —t, then 8y — —0, ¢ — —¢ by
analogous argument

> system above is 77 symmetric (even number of minus signs to every
term under the P7 mapping)



PT symmetry (contd.)

> concept of PT symmetry in quantum mechanics + QFT
— discrete symmetries

> operator H is PT symmetric if
(PTYH'(PT)™" =H, (1)

(* denotes complex and not Hermitian conjugate)

> interest in QM: P7T systems can have a real spectrum even if they are
non-Hermitian (e.g., Bender & Boettcher, 1998)

» Eady problem can be described as c¢ = M¢ where

o, 0\ CS )
—C 1--]—-C
M_;l 2u 2) n )
- sC 1 0\ CS @ 652 ’
2w 2u

and M is PT symmetric (Mis realand PT = —I; latter from David ef al., 2022, PoF)



PT symmetry (contd.)

> if cp = Mg, then for A = Tr(M)? — 4Det(M),

¢ — Tr(M) + Det(M) =

> if A <0, c; # 0 (i.e. instability)

— ¢ = ¢ since VA purely
imaginary

» if A > 0,c¢; = 0 (i.e. neutral)
— ¢ # ¢ since VA purely real

— collision at A = 0, exceptional
points

> see David, Delplace & Venaille
(2022), PoF for more
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